Count Coprime Subsequences
Practice
2.8 (4 votes)
Combinatorics
Dynamic programming
Basic programming
Number theory
Math
Inclusion Exclusion
Problem
59% Success 398 Attempts 30 Points 5s Time Limit 256MB Memory 1024 KB Max Code

A sequence \(S\) of length \(N\) is called co-prime sequence if \(GCD(S[i], S[i + 1]) = 1\) for \(0 \le i < N - 1\), i.e. every adjacent element is co-prime, any sequence of length \(1\) is a co-prime sequence.

Given an Array \(arr\) of length \(N\), find the number of non-empty co-prime subsequences of this array, modulo \(10^9+7\).

Input Format:

  • First line contains an integer \(T\) denoting the number of test cases.
  • First line of each testcase contains an integer \(N\) denoting length of \(arr\).
  • Next line contains \(N \) space-seperated integer, denoting the elements of \(arr\).

Output Format:

  • For each testcase, In a single line, print the number of non-empty co-prime subsequence of the array, modulo \(10^9+7\).

Constraints:

  • \(1 \le T \le 10\)
  • \(1 \le N \le 10^5\)
  • \(1 \le arr[i] \le 10^5\)

Please login to use the editor

You need to be logged in to access the code editor

Loading...

Please wait while we load the editor

Loading...
Results
Custom Input
Run your code to see the output
Submissions
Please login to view your submissions
Similar Problems
Points:30
40 votes
Tags:
CombinatoricsInclusion-exclusionAlgorithmsMath
Points:50
1 votes
Tags:
AlgorithmsOpenApprovedHard
Points:30
5 votes
Tags:
ApprovedDepth First SearchInclusion ExclusionInclusion exclusion principleMathMediumMobius Function