Counting the number of intervals
Practice
4.3 (18 votes)
Advanced data structures
Data structures
Medium
Segment trees
Problem
53% Success 1872 Attempts 30 Points 3s Time Limit 512MB Memory 1024 KB Max Code
You are given a sequence of \(N\) integers \(a_1, a_2, \dots, a_N\) and an integer \(K\). Your task is to count the number of intervals \([l, r] \) such that \(a_l + a_r + min(a_l, a_{l + 1}, \dots, a_r) \le K\).
Input format
- First line: Two space-separated integers \(N, K\)
- Second line: \(N\) space-separated integers denoting the elements of the sequence
Output format
- Print the answer in a single line.
Constraints
\(1 \le N \le 5\times10^5\), \(80\%\) test cases \(N \le 2\times 10^5\)
\(1 \le K \le 10^{18}\)
\(1 \le a_i \le 10^{18}\)
Submissions
Please login to view your submissions
Similar Problems
Points:30
8 votes
Tags:
ApprovedMathMediumOpenTrees
Points:30
2 votes
Tags:
Data StructuresAdvanced Data StructuresSegment Trees
Points:30
16 votes
Tags:
Advanced Data StructuresArithmetic ProgressionData StructuresLazy PropagationMediumSegment Trees
Editorial