Make an array
Practice
4.7 (10 votes)
Math
Linear search
Algorithms
Problem
55% Success 2925 Attempts 20 Points 1s Time Limit 256MB Memory 1024 KB Max Code

You are given an array A of length N.  You take an array B of length N such that B[i] = 0 for each 1 <= i <= N. You can apply the following operation on B any number of times:

  • Choose (N - 1) distinct indices and add 1 to each of those indices.

Task

Find the number of operations required to convert array B into array A by applying the given operation. Print -1 if it is impossible to do so.

Function description

Complete the function solve() provided in the editor. This function takes the following two parameters and returns the required answer:

  • N: Represents the length of array A.
  • A: Represents the array A.

Input format

Note: This is the input format that you must use to provide custom input (available above the Compile and Test button).

  • The first line contains T, denoting the number of test cases. T also specifies the number of times you have to run the solve function on a different set of inputs.
  • For each test case:
    • The first line contains N, denoting the size of array A.
    • The second line contains N space-separated integers A[1], A[2], ....., A[N], denoting the elements of  array A.

Output format
For each test case, print the number of operations required to convert array B into array A by applying the given operation or -1 if it is impossible to do so.

Constraints

\(1 \leq T \leq 10^4 \\ 2 \leq N \leq 10^5\\ \\0\leq A_i \le 10^{9} \\ \text{Sum of $N$ over all test cases does not exceed }2\cdot 10^5\)

Please login to use the editor

You need to be logged in to access the code editor

Loading...

Please wait while we load the editor

Loading...
Results
Custom Input
Run your code to see the output
Submissions
Please login to view your submissions
Similar Problems
Points:20
176 votes
Tags:
Ad-HocApprovedBasic ProgrammingEasyOpen
Points:20
125 votes
Tags:
AlgorithmsEasySearching
Points:20
14 votes
Tags:
Linear SearchAlgorithmsGreedy algorithm