Mod Pairs
Practice
3.6 (8 votes)
Math
Number theory
Modulus arithmetic
C++
Problem
63% Success 2375 Attempts 30 Points 1s Time Limit 256MB Memory 1024 KB Max Code
Given an array \(A\) of \(N\) elements, a prime number \(P\) and an integer \(K\). It is guaranteed all the elements in the array are distinct.
Find the number of pairs of indices \((i,j)\) such that \((1 \le i < j \le N)\) and \((A[i] + A[j]) \times (A[i]^2 + A[j]^2)) \equiv K \ \text{mod} \ P\)
Note: 1 based indexing is followed.
Input format
- The first line contains 3 space-separated integers \(N, P, K\).
- The second line contains \(N\) space-separated integers denoting the array \(A\).
Output format
Print the number of pairs of indices which satisfy the given condition in a new line.
Constraints
\(2 \le N \le 10^5 \\ 0 \le K, A[i]\le P - 1 \\ 2 \le P \le 10^5\)
Submissions
Please login to view your submissions
Similar Problems
Points:30
1 votes
Tags:
MediumMathNumber TheoryMedium
Points:30
Tags:
MediumModular arithmeticNumber Theory
Points:30
6 votes
Tags:
ArraysNumber TheoryData Structures1-DMathModulus Arithmetic
Editorial