No Girls One Sequence
Practice
4.4 (11 votes)
Mathematics
Medium
Greatest common divisor
Number theory
Problem
91% Success 2620 Attempts 30 Points 1s Time Limit 256MB Memory 1024 KB Max Code

The \(\textit{score}\) of a sequence that contains positive integers \(b_1, b_2, \ldots, b_k\) is given as \(\mathrm{gcd}(b_1, b_2, \ldots, b_k)\).

You are provided a sequence of positive integers \(a_1, a_2, \ldots, a_n\) and two integers \(l\) and \(r\) \((l \le r)\). You are required to select an integer \(x\ (l \le x \le r)\) and add \(x\) to all elements of the \(a\). This provides you a new sequence of positive integers\(a_1 + x, a_2 + x, \ldots, a_n + x\).

If you have selected the \(x\) through an optimal way, then determine the maximum score of \(a_1 + x,\ a_2 + x,\ \ldots, a_n + x\)?

Input format

  • First line: Three integers \(n,\ l,\ and\ r\) representing the number of elements available in the \(a\) sequence and the allowed range of \(x\) \((1 \leq n \leq 10^6,\ 1 \leq l \leq r \leq 10^{12})\)
  • Second line: \(a_1, a_2, \ldots, a_n\ (1 \leq a_i \leq 10^{12})\)

Output format

Print an integer that represents the maximum score of \(a_1 + x, a_2 + x, \ldots, a_n + x\).

Please login to use the editor

You need to be logged in to access the code editor

Loading...

Please wait while we load the editor

Loading...
Results
Custom Input
Run your code to see the output
Submissions
Please login to view your submissions
Similar Problems
Points:30
1 votes
Tags:
GCDNumber TheoryC++Math
Points:30
17 votes
Tags:
Basic ProgrammingNumber theory
Points:30
4 votes
Tags:
Basic ProgrammingGCDMathNumber Theory