Optimistic Permutations
Practice
0 (0 votes)
Problem
10% Success 183 Attempts 30 Points 2s Time Limit 256MB Memory 1024 KB Max Code
Let \(p_1, p_2, ..., p_n\) be a permutation of \(1,2, ...,n\).
An optimistic permutation follows \(p_i > i-2 \, \forall \, i \in [1, n]\).
An over-optimistic permutation has the following properties:
- It is optimistic.
- There exists atleast one \(i \,(i \in [1, n])\) such that \(p_i \geq i+2 \).
Given \(n\), find the count of all over-optimistic permutations modulo \(10^9+7\).
Input:
The first line contains \(T \) - the number of testcases, followed by T lines each containing one integer \(n\).
Output:
For each testcase print the answer on a newline.
Constraints:
- \(1 \leq T \leq 500000\)
- \(1\leq n \leq 10^{18}\)
Submissions
Please login to view your submissions
Similar Problems
Points:30
Tags:
Medium
Points:30
9 votes
Tags:
Linear AlgebraDynamic ProgrammingAlgorithmsMatrix ExponentiationMath
Points:30
1 votes
Tags:
Linear AlgebraDynamic ProgrammingMatrix ExponentiationMediumMathematics
Editorial