Palindromes Everywhere
Practice
4.2 (12 votes)
Algorithms
Dynamic programming
Medium
Palindromes
String manipulation
Two dimensional
Problem
86% Success 2669 Attempts 30 Points 1s Time Limit 256MB Memory 1024 KB Max Code
You are given \(2\) strings \(A\) and \(B\).
Let \(F(S)\) denote a substring of \(S\), possibly empty.
Let \( W = f(A) + f(B)\), \(('+' = concatenation)\)
Find the maximum possible length of such a string \(W\) which is also a Palindrome.
Note
- The strings consist of lower case Latin letters.
Input Format
- First Line contains the string \(A\).
- Second Line contains the string \(B\).
Output Format
- Print the maximum possible length of a palindromic string \(W\)
Constraints
- \(1 \le |A|,|B| \le 10^3\)
Submissions
Please login to view your submissions
Similar Problems
Points:30
7 votes
Tags:
Depth First SearchDynamic ProgrammingMediumTwo dimensionalapprovedmatrix
Points:30
58 votes
Tags:
ApprovedDynamic ProgrammingGraphsMathMediumOpenRecursionTwo dimensional
Points:30
55 votes
Tags:
Dynamic ProgrammingMediumTwo dimensional
Editorial