Weighted Tree Function
Practice
4 (3 votes)
C++
Algorithms
Graph representation
Graphs
Problem
71% Success 737 Attempts 50 Points 1s Time Limit 256MB Memory 1024 KB Max Code

You are given a weighted tree with \(N\) nodes and \(N - 1\) edges. 

\(E\) is defined as \(\sum_\limits{i=1}^{i = N} \sum_\limits{j=i +1}^{j = N} F(i,j)\). Also, \(F(i, j)\) is equal to = (Maximum value of the edge that is present on the simple path between node \(i\) and \(j\)\(\times i \times j\) 

You are required to determine the value of \(E\) modulo \(10^9 + 7\).

Input format

  • The first line contains an integer \(N\) denoting the number of nodes in a tree.
  • The next \(N - 1\) lines contain three space-separated integers \(u, v, w\) denoting an edge between node \(u\) and \(v\) with weight \(w\).

Output format

Print the required value of \(E\) modulo \(10^9 + 7\).

Constraints

\(1 \le N \le 2 \times 10^5 \\ 1 \le w \le 10^6 \\ 1 \le u, v \le N\)

 

Please login to use the editor

You need to be logged in to access the code editor

Loading...

Please wait while we load the editor

Loading...
Results
Custom Input
Run your code to see the output
Submissions
Please login to view your submissions
Similar Problems
Points:50
2 votes
Tags:
GraphsAlgorithmsGraph Representation
Points:50
4 votes
Tags:
AlgorithmsGraphsHard
Points:50
5 votes
Tags:
AlgorithmsApprovedGraphsHardOpen